PROFESSIONAL KNOWLEDGE (Quality Curriculum)

PROFESSIONAL PRACTICE (Quality Teaching)

SCHOOL IMPROVEMENT AGENDA FOR IMPROVED STUDENT ACHIEVEMENT (Best fit pedagogy)

ENGAGEMENT (Teachers as life-long learners in a learning community)
CONTENTS

Rationale
Curriculum- Strategic and Improvement (CSI) Management Team
Role of the Curriculum Support Teacher
Role of Curriculum Teams- English, Mathematics and Science
Overview of Curriculum Priorities
Identifying Areas for Improvement
Exit Outcomes
Curriculum Organisation
Highly Effective Teachers
Pedagogy
Differentiated Learning
Whole School Thinking Skills Program
Positive Pathways
Cooperative learning Strategies
Developing Habits of Mind
Assessment and Reporting
Assessment and Reporting in Prep
Moderation
Forming Partnerships
Supporting Documents
The Waterford West State School Curriculum Plan outlines how the school addresses curriculum development, pedagogy, assessment and reporting. It puts into action syllabus and curriculum documents from Education Queensland as school-based curriculum delivery documents.

Curriculum at Waterford West is developed around ACARA for English, Mathematics, Science and History.

The school is committed to developing teacher practices through professional development focusing on ‘best fit’ high impact teaching practice in all aspects of curriculum implementation and assessment. This is evidenced by the development of a whole school Pedagogical Framework. The Curriculum Plan uses C2C as a basis and is adjusted and tailored to meet the needs of our students.

The recently developed Assessment and Reporting Schedule supports the NAPLAN plan, the Moderation plan and Gifted and Talented Action plans which are aimed to further enhance teacher pedagogy and whole school curriculum delivery. These plans have been collaboratively developed by working parties supported by a Committee structure that forms the foundation of our curriculum development processes.

CURRICULUM DEVELOPMENT AND IMPLEMENTATION

CURRICULUM DEVELOPMENT
Waterford West State School’s Curriculum Plan is updated annually to reflect the current direction of curriculum, pedagogy, assessment and reporting. Each KLA Committee and working party reviews, evaluates and adjusts the documents to reflect current systemic priorities and directions.

CURRICULUM IMPLEMENTATION
The strategic curriculum structure aims to maximize staff strengths and recognize the history of curriculum implementation in the school. Curriculum implementation is supported through the PACs (Planning and Assessment Conversations) held once each term with one-on-one individual interviews with teachers and their line manager. The Administration team line manages year levels as below:

<table>
<thead>
<tr>
<th>Role</th>
<th>Year Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal</td>
<td>Years 4 & 5</td>
</tr>
<tr>
<td>Deputy Principal Student Engagement</td>
<td>Years 6 & 7</td>
</tr>
<tr>
<td>Deputy Principal Curriculum Support</td>
<td>Years Prep & 1</td>
</tr>
<tr>
<td>Head of Special Education</td>
<td>All SEP Teachers and Teacher – Aides</td>
</tr>
<tr>
<td>Head of Curriculum</td>
<td>Years 2 & 3</td>
</tr>
</tbody>
</table>
The goal of our curriculum development and implementation processes is to:

- Continue to align school priorities to ACARA
- Prioritize the KLAs of English, Maths, Science, and History
- Monitor school targets in English, mathematics, and science
- Respond to national and state directives and meet all strategic expectations
- Identify the professional development needs of staff and support them to deal with curriculum change processes
- Keep staff informed of curriculum changes and imperatives and to provide targeted professional development as needed
- Ensure that staff’s continuing efforts in curriculum are valued and supported
- Liaise with Curriculum committee leaders

The Head of Curriculum leads curriculum by:

- Identifying, highlighting and encouraging sharing by Waterford West State School teachers, of high quality teaching practices
- Reviewing Whole Curriculum documents
- Examining and evaluating units of work developed for each year level
- Monitoring the Teaching and Learning P-10 Roadmap website and OneSchool for supporting resources and plans
- Identifying (and purchasing) resources and professional development requirements
- Considering differentiation strategies for each curriculum area

Curriculum program development is supported by Key teachers in English, Mathematics, Science, and History. These key teachers lead the implementation of the National Curriculum.
Professional development

Ongoing professional development is essential in maintaining skilled and confident teachers. Teachers at Waterford West are provided targeted, on-going professional development (including professional conversations, mentoring, workshops and presentations) around key areas:

- High impact pedagogy
- Teaching practices that make a significant impact on student achievement (Effective feedback, questioning, direct instruction, etc)
- Differentiating learning to cater for individual students

Time allocations for English, Mathematics, Science and History

Access to a rich and engaging curriculum for all students is important. Queensland state schools are required to address ACARA each year from Prep to Year 9.

International, national and state data highlights the need to focus attention on the teaching and learning of English, mathematics and science to improve student achievement in these important areas.

English and mathematics are fundamental in all years of schooling and must therefore be a primary focus of learning. The focus on science recognises that studying this KLA provides an essential preparation for twenty-first century living. While we will continue to teach all KLAs, it is important that we prioritise English, mathematics and science. Required time allocations for English, mathematics and science in Years 1 to 7 are provided in the table below. These allocations represent minimum times. They will be reviewed to align with the implementation of the Australian Curriculum.

Minimum time allocations for English, mathematics, science and history:

<table>
<thead>
<tr>
<th></th>
<th>Prep – 3:</th>
<th>Years 4-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>7 hours</td>
<td>6 hours</td>
</tr>
<tr>
<td>Mathematics</td>
<td>5 hours</td>
<td>5 hours</td>
</tr>
<tr>
<td>Science</td>
<td>Prep – 2: 1 hour</td>
<td>Years 3-6: 1.75 hours Year 7: 2.5 hours</td>
</tr>
<tr>
<td>History</td>
<td>Prep – 2: 1 hour</td>
<td>Year 3 - 6: 2 hours Year 7:2.5 hours</td>
</tr>
</tbody>
</table>
Through studying English students learn to listen, read and view, speak, write and create increasingly complex and sophisticated texts with accuracy, fluency and purpose. They acquire, use and display their knowledge in and out of school. Students come to an explicit understanding and appreciation of the nature of the English language and how it works to create various kinds of meanings. The study of English helps students to extend and deepen their relationships, to understand their identities and their place in a changing world, and to become citizens and workers who are ethical, thoughtful and informed. It also helps students to engage imaginatively with literature, to understand and value informed appreciation, criticism and literary history. In the senior years of school, studying English helps prepare students to pursue pathways in education, training and work.

All teachers at Waterford West State School are responsible for ensuring that students have the knowledge, skills and processes in English that they will require for active and informed participation in school and beyond.

The English curriculum aims to ensure that students:

- Understand and use Standard Australian English in its spoken and written forms and in combination with other non-linguistic forms of communication
- Develop a sense of the capacity of Standard Australian English to evoke feelings, to organize people and events, and to convey information and ideas
- Use language to inform, persuade, entertain and argue
- Understand, interpret, reflect on and create an increasingly broad repertoire of spoken, written and multimodal texts across a growing range of settings
- Develop interest and skill in inquiring into the aesthetic aspects of texts, an informed appreciation of literature, and an understanding of literary criticism, heritage and values
- Develop proficiency in the increasingly specialised written and spoken language forms of schooling

(Australian Curriculum: Draft Consultation version 1.1.0: ACARA Australian Curriculum Consultation Portal 2010).

The Key Learning Area of English is about making sense of diverse human experiences, representing experiences in real and imagined worlds, and developing understandings of texts and language, and their aesthetic value. To do this, students need opportunities to interpret and construct literary and non-literary texts, considering purpose, audience and textual features.

Literary and non-literary texts create imaginative worlds and tell stories of cultures and communities. Students need opportunities to understand, appreciate, respond to and create these texts in the English program. Texts include:

- narrative and traditional stories (novels, poetry, plays, picture books)
- personal recounts
- descriptions
- autobiographies and biographies
- explanations
- expository arguments and discussions
- personal and critical responses to texts
- interpretations and reviews of texts.
Textual features (language) include text structure, and patterns of grammar, vocabulary, spelling and punctuation. Students need opportunities to understand textual features and how these are used within English texts.

The study of English allows students to understand the way language operates for different social purposes and to know how to use language in a variety of forms. Students need to develop understandings about English texts (any form of written, spoken or visual communication involving language) and recognise how language works within these. They develop these understandings by, for example:

- reading and viewing for enjoyment
- analysing language
- interpreting texts
- constructing texts to entertain and move
- considering the aesthetics of text and language
- arguing for and against representations of people, things and places in texts
- considering ways in which authors and speakers position readers and listeners

At Waterford West State School, we teach English as a distinct area of study in its own right. However, like other key learning areas, English provides contexts for developing literacy skills and knowledge. Particular aspects of literacy are identified as being most relevant to English and developed through explicit teaching of English.

We then provide students with opportunities to interpret and use the English language correctly, fluently, creatively, critically, confidently and effectively in a range of digital and print settings, and in texts designed for a range of purposes and audiences.

School Expectations - English

Teachers at Waterford West State School are expected to:

- Implement ACARA
- Timetable the teaching of English for 7 hours (Years 1-3) and 6 hours (Years 4-7) each week
- Identify students’ prior knowledge, skills and understanding through pre-testing and analysis of existing data
- Develop a classroom English Plan that incorporates reading, writing, listening, speaking, spelling, grammar, punctuation and editing, and meets the identified learning needs of students
- Explicitly teach spelling, grammar and punctuation in the context of reading and writing (refer to School Program)
- Develop assessment tasks and provide opportunities for students to demonstrate their knowledge, understandings and skills in all areas of English
- Work towards school targets in English
- Collect evidence of student knowledge, understanding and skills in all areas of English
- Participate in professional conversations and Moderation activities to achieve consistency in teacher judgments across classes
- Apply agreed standards to student work for the purposes of assessment
- Report on student progress two times a year using an agreed 5-point scale
- Provide ongoing feedback to students on their learning
Mathematics:

Through learning mathematics students learn to use understandings of number, measurement, algebra, space, and chance and data to think, reason, create, investigate, reflect and communicate mathematically. All teachers at Waterford West State School have the responsibility to assist students to acquire the essential knowledge, understandings and skills in mathematics that they will require for active, informed participation in school and beyond.

At Waterford West State School, mathematics is an integral and highly valued component of the curriculum. Students identify and explore mathematics concepts through active investigation of real-life situations involving mathematics. They understand that mathematics can help them to make meaning of their world. When learning about mathematics, students recognise that there are particular ways of working with concepts in mathematics. Students also recognise that there are particular facts and procedures required for knowing and understanding in mathematics. Students and teachers value mathematics as a way of investigating, thinking, reasoning and relating to real-life situations.

Mathematics is a way of making sense of the world. The mathematics Key Learning Area helps students to know about mathematics, know how to do mathematics, and know when and where to use it. All people need the capacity to make sense of and be critical about numerical information. To achieve this they need a disposition to think and act mathematically, and the confidence and intuition to apply mathematical concepts to explore and solve everyday problems that confront them.

Skills needed for mathematics include mental computation and deep understandings of how numbers work. They also require meta-cognitive/higher order skills such as reflection, analysis, estimation, justification, synthesis and communication skills. These skills are needed to describe each of these in appropriate language and format, and are learned through working mathematically. The ways of working will be used to provide guidance of what students will be expected to do.

At Waterford West State School, mathematics is seen as a dynamic field of study. Students from our Prep Year to students in Year 7 will be led to discover the power and place of mathematics, as a discipline, and in our everyday encounters at work and play outside school.

School Expectations - Mathematics

Teachers at Waterford West State School are expected to:

- Implement the Waterford West State School Mathematics Program (available in print and digital format)
- Timetable the teaching of mathematics for a minimum of 5 hours (Years 1-7) each week
- Identify students’ prior knowledge, skills and understanding through pre-testing and analysis of existing data
- Develop a classroom Mathematics Plan that incorporates all strands in Mathematics, and the assessable elements of thinking and reasoning, communicating and reflecting, and meets the identified learning needs of students
- Develop assessment tasks and investigations that provide opportunities for students to demonstrate their knowledge, understandings and skills in all areas of mathematics
- Work towards school targets in Mathematics
- Collect evidence of student knowledge, understanding and skills in all areas of Mathematics
- Participate in professional conversations and moderation activities to achieve consistency in teacher judgments across classes
- Apply agreed standards to student work for the purposes of assessment
- Report on student progress two times a year using an agreed 5-point scale
- Provide ongoing feedback to students on their learning
Science:

Science provides an empirical way of answering interesting questions about the biological, physical and technological world. The knowledge it produces has proved to be a reliable basis for action in our personal, social and economic lives. Science is a dynamic, collaborative and creative human endeavor arising from our curiosity and interest in making sense of our world through exploring the unknown, investigating universal mysteries, making predictions and solving problems. All teachers at Waterford West State School have the responsibility to assist students to acquire the essential knowledge, understandings and skills in science that they will require for active, informed participation in school and beyond.

Waterford West State School's Science Plan has been designed to align with the Australian Curriculum. Science encompasses the three interrelated areas of Science Inquiry Skills (incorporating skills and understanding of science as a way of knowing and doing), Science as a Human Endeavour (incorporating knowledge and understanding of the personal, social, environmental, cultural and historical significance and relevance of science), and Science Understanding (incorporating knowledge and understanding of the biological, physical, and earth and space sciences).

School Expectations - Science

Teachers at Waterford West State School are expected to:

- Implement the Waterford West State School Science Program (available in digital format)
- Timetable the teaching of science for 1 hours (Years 1-5) and 2 hours (Years 6/7) each week
- Identify students’ prior knowledge, skills and understanding through pre-testing and analysis of existing data
- Follow the 2011-2013 Science Overview (below) to implement science units
- Implement assessment tasks developed for each of the science units
- Collect evidence of student knowledge, understanding and skills in all areas of Science
- Participate in professional conversations and Moderation activities to achieve consistency in teacher judgments across classes
- Apply agreed standards to student work for the purposes of assessment
- Report on student progress two times a year using an agreed 5-point scale
- Provide ongoing feedback to students on their learning
2013 Science Overview:

The Primary Connections units that align with ACARA will be used.

<table>
<thead>
<tr>
<th>Year</th>
<th>Biology</th>
<th>Earth and Space</th>
<th>Chemistry</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep</td>
<td>Staying Alive</td>
<td>Weather in my world</td>
<td>What's it made of</td>
<td>On the move</td>
</tr>
<tr>
<td>1</td>
<td>Schoolyard Safari</td>
<td>Sky and Land</td>
<td>Spot the difference</td>
<td>Sounds sensational</td>
</tr>
<tr>
<td>2</td>
<td>Growing and changing</td>
<td>Water works</td>
<td>Recycling</td>
<td>Push pull</td>
</tr>
<tr>
<td>3</td>
<td>Plants in Action</td>
<td>Spinning in space</td>
<td>Runny or not</td>
<td>Producing heat in other ways.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Non PC Unit)</td>
</tr>
<tr>
<td>4</td>
<td>Characteristics of animals</td>
<td>Weathering and erosion</td>
<td>Material world</td>
<td>Smooth moves</td>
</tr>
<tr>
<td>5</td>
<td>Marvellous micro-organisms</td>
<td>Space</td>
<td>Solids, gases and liquids. (Non PC Unit)</td>
<td>Light fantastic</td>
</tr>
<tr>
<td>6</td>
<td>Life in balance</td>
<td>Earthquake explorers</td>
<td>Change detectives</td>
<td>It's electrifying</td>
</tr>
<tr>
<td>7 No Primary Connections Units.</td>
<td>Differences within and between groups of organisms. Food chains/food webs</td>
<td>Earth and space. Seasons, eclipses. Renewable resources and water.</td>
<td>Mixtures of solutions.</td>
<td>Forces.</td>
</tr>
</tbody>
</table>
NAPLAN Analysis - Waterford West State School

An analysis of NAPLAN data for Waterford West State School using SUNLANDA has identified specific areas in which students may need additional support through targeted teaching.

<table>
<thead>
<tr>
<th>Year</th>
<th>Level</th>
<th>Literacy</th>
<th>Numeracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 3</td>
<td></td>
<td>Grammar and punctuation</td>
<td>Ways of working</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uses capital letters for proper nouns</td>
<td>Read time on an analogue clock to quarter hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies correct construction of a complete sentence with subject and verb</td>
<td>Solve spatial reasoning problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies the correct use of apostrophes for contractions</td>
<td>Identify an impossible outcome of a chance event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies correct form of a verb group in a simple sentence</td>
<td>Calculate the number of quarters given whole and half objects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spelling</td>
<td>Calculate the volume of a container using informal units</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uncommon consonant pattern gu- (guess)</td>
<td>Solve a reasoning problem involving interpretation of data and sharing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjective forming suffix added to base word where –y changes to –ier (heavier)</td>
<td>Solve a multi-step problem involving more than one type of operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies the spelling of an l- influenced vowel in a single-syllable word (calf)</td>
<td>Determine the number of edges of a 3D object given its faces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies double consonant at syllable juncture (paddling, tunnel)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies base word with adverb-forming suffix with no change to base word (closely)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reading</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recognising the purpose of cohesive terms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Locating directly state information</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linking information across two sections of a text</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inferring information about a character and events</td>
<td></td>
</tr>
<tr>
<td>Year 5</td>
<td></td>
<td>Grammar and punctuation</td>
<td>Ways of working</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies correct form of a verb to accompany the modal verb could in a complex sentence</td>
<td>Solves a single step problem involving multiplication of a 2-digit number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selects subjunctive verb for a clause expressing a request</td>
<td>Compares measurements given in different units of mass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies a dependent clause to complete a complex sentence</td>
<td>Selects a shape that tessellates in a square</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies correct comparative form of an adverb in a complex sentence</td>
<td>Calculates the volume of a container using informal units</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies the correct pronoun in a complex sentence</td>
<td>Solves an inequality in the form of (a + b > ? x c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spelling</td>
<td>Determines the number of faces on a complex object made of cubes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle unstressed syllable in a multi-syllable word (remember)</td>
<td>Applies proportional reasoning to estimate the solution to a multi-step problem involving money and mass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-syllable word with noun-forming suffix –sion changing the final consonant of the base word (extend)</td>
<td>Calculates the perimeter of a composite shape</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adding –ent by doubling l at syllable juncture (excel)</td>
<td>Applies knowledge of place value and multiplication to complete a number sentence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify r-influences vowel our pattern in a multi-syllable word (journey)</td>
<td>Solves a problem involving multiples of 2, 3 and 5 on a number chart</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies the spelling of an l- influenced vowel in a single-syllable word (calf)</td>
<td>Determines a future date without a calendar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Double consonant at syllable juncture (address)</td>
<td>Identifies a complex symmetrical design after a square is folded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vowel sound ur in an unstressed first syllable and s in second syllable (surprised)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrects letter pattern representing long vowel –e (ea) and inflected ending –es (breathes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greek root cycle (bicycle)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noun forming suffix –or in the final unstressed syllable (tractor)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reading</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synthesises information to determine a key attribute of a character in a narrative text</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Locates a common point of view in a paired persuasive text</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifies the strategy used to conclude an argument in a paired persuasive text</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Grammar and punctuation</td>
<td>Ways of working</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Selects the subjunctive verb for a clause expressing a request
Identifies a dependent clause to correctly complete a complex sentence
Identifies correct pair of possessive pronouns in a compound sentence
Recognises use of quotation marks for indicating non-literal meaning in a simple sentence
Adding –ent by doubling ll at syllable juncture (excel)
Latin root sym and noun forming suffix –y at the end of a word (sympathy)
Base word environ at syllable juncture (environment)
Prefix –en and vowel pattern our in the base word (encouraged)
Greek root techno and suffix al (technological)
Represent both sounds of c and add –able to base word (acceptable)
-tch and inflected ending –es (sketches)
Ambiguous vowel –aw (awkwardly)
Identifies –el in unaccented final syllable (label)
Identifies base word refer and adds appropriate suffixence (references)
Double consonant at syllable juncture and uses l to represent y sound (stallion)
-ue ending (residue)
-sk consonant blend at beginning of two syllable word (skewers)
Identifies a stereotype that is challenged
Locates two words used to sequence in an information text
Identifies assumed knowledge required of readers to understand an information text
Infers a belief suggested in one of a pair of advertisements
Locates information in a paragraph
Infers the effect of a repetitive description
Locates a reason for supporting evidence in a persuasive text</td>
<td>Calculator allowed
Calculates the solution in dollars and cents to a word problem requiring division
Selects the point on a number line that indicates the probability of a chance event
Identifies the rule to match a table of values
Calculates area of a triangle on a grid
Identifies the category in a frequency table that represents a given fraction of the sample
Calculates the area of a rectangle in informal units in a complex design
Solves a word problem involving proportions in a practical setting
Calculates and compares sale process given percentage reductions
Solves an equation written in words
Solves a multi-step problem**
Non-Calculator
Determines a future date without a calendar
Solves a multi-step word problem involving angle size and part revolution of a circle
Interprets and compares data on a complex bar graph to identify information
Solves a word problem using proportional reasoning
Uses proportional reasoning and information in a table to solve a problem
Solves a multi-step word problem using sharing and remainders
Calculates the size of an angle using angle properties of a square and equilateral triangle</td>
<td></td>
</tr>
</tbody>
</table>
Explicit teaching

The Pedagogical Framework highlights the importance of explicit teaching – every day, in every lesson.
The focus of explicit teaching is on achieving clearly identified and specific learning outcomes. Explicit teaching involves breaking down topics and content into small parts and teaching each part individually. It involves explanation, demonstration and lots of practice within a guided and structured lesson. Explicit teaching is particularly effective for introducing topics and specific skills to ensure that a basic understanding of information and skills can be built on through modeling, practice, repetition, review and consolidation.

ASSESSMENT

At Waterford West State School we will continue to develop an assessment culture. This is achieved by:

- Using assessment as, of and for learning
- Building an assessment culture with an emphasis on front-ending intellectually challenging and relevant assessment tasks that are aligned to curriculum intent and provide opportunities for students to demonstrate knowledge and understanding and application of skills and processes.
- Using GTMJs, the Content descriptors and achievement standards and descriptors as tools for moderation within year level teams and across schools to ensure consistency of judgments.
- Implementing strategies for developing reflective students
- Reporting on student progress against agreed standards

Standards

Standards are integral to the alignment of curriculum, assessment and reporting. For teachers, parents and students, they provide a shared language for describing the quality of student achievement.

Using a 5-point scale, the Standards describe how well a student has demonstrated their learning based on a collection of evidence. They can also be used to report student progress and achievement. The Standards are the same for all key learning areas.

Embedding ICT

Meaningful and engaging learning experiences that incorporate the use of ICT are included in integrated unit plans. These activities aim to help students develop their ICT knowledge, understanding, ways of working and skills needed for learning and working in today’s digital world. We believe children’s learning is enhanced when digital technologies are integrated across the curriculum. They allow children to access and manipulate information as well as develop creative skills as they make movies, webpages and digital presentations.

Each teacher has been provided with a Laptop as part of the C4T Program. Teachers are encouraged to use these Laptops for planning, teaching, assessment and reporting. All classes now have Interactive Whiteboards located within the classroom space. Teachers are encouraged to use the IWBS in explicit teaching, to model digital tools and applications, to show videos and podcasts, and for many other engaging purposes. Classroom PCs are located within each double teaching area and can be included as part of literacy and numeracy rotational activities and integrated studies. Teachers may choose to create a
timetable to ensure student access is organised across the week. Individual and group activities may be organised to make use of the classroom computers. Each class will be scheduled in the Computer Lab each week and will be able to make bookings to use the resource Centre Mini Lab to access computer use for students. Further tools for learning are available through the sets of lap-tops and i-pads.
Studies that take into account all of the available evidence on teacher effectiveness suggest that students placed with high-performing teachers will progress three times as fast as those placed with low-performing teachers. (Barber & Mourshed, 2007)

At Waterford West we believe that all teachers can be highly effective teachers. There is now a large body of educational research into the factors underpinning highly effective teaching. Meta-analyses of this research (e.g. Walberg, 1984; Bransford, Brown & Cocking, 2000; Hattie, 2003; Marzano, 2001,2003) reveal a number of teaching practices associated with significantly improved student outcomes. Four broad characteristics of highly effective teaching are summarised briefly here.

High expectations

Highly effective teachers create classroom environments in which all students are expected to learn successfully. They set high expectations for student learning and create orderly classrooms in which students feel safe and supported to learn. They are driven by a belief that, although individuals are at different stages in their learning, every student is capable of learning and making progress beyond their current level of attainment if motivated and given appropriate learning opportunities and support. Highly effective teachers understand the importance of developing students’ own beliefs in their abilities to learn successfully, and work to promote students’ understandings of the relationship between effort and success.

As part of this process, highly effective teachers make clear what students are expected to learn. They communicate clear and high expectations of individual students and are clear about the standards expected of students in each grade of school. They set learning goals for individuals couched in terms of the knowledge, skills and understandings that they are expected to develop (not simply in terms of classroom activities to be completed). They set high expectations for individual’s progress and are focused on ensuring that all students achieve grade-level proficiency in foundational skills such as reading, writing and numeracy.

Quality Curriculum

Highly effective teachers have a deep understanding of the subjects they teach. These teachers have studied the content they teach in considerably greater depth than the level at which they currently teach and they have high levels of confidence in the subjects they teach. Their deep content knowledge allows them to focus on teaching underlying methods, concepts, principles and big ideas in a subject, rather than on factual and procedural knowledge alone.

Highly effective teachers not only have deep knowledge of the subjects they teach, they also have deep understandings of how students learn those subjects (i.e. pedagogical content knowledge). They understand how learning typically progresses in a subject: for example, the skills and understandings that are pre-requisites for progress, and common paths of student learning. They are familiar with the kinds of learning difficulties that some students experience and with appropriate interventions that can provide support.
Quality Teaching

The most important single factor influencing learning is what the learner already knows. Ascertain this and teach him accordingly. (Ausubel, 1968)

Highly effective teachers establish where students are up to in their learning. They understand the importance of first ascertaining students’ current levels of knowledge, skill and understanding, and they see teaching not so much as the delivery of one-size-fits-all, grade-appropriate curriculum content to a classroom of students, as the design of learning opportunities tailored to students’ current levels of readiness and need. They use ‘starting point’ assessments and diagnoses of individual difficulties and misunderstandings to design effective interventions and teaching.

Having established where students are up to in their learning, these teachers then direct their teaching to student needs and readiness. They maximise student engagement — and hence learning — by differentiating teaching according to student needs (i.e. not teaching to the middle of the class, but personalising teaching and learning as required). They use evidence-based teaching methods (such as direct instruction) that are known to be effective in promoting student learning and they use intrinsic factors (such as curiosity) to engage students and to motivate learning. Highly effective teachers work to ensure that all students are appropriately engaged, challenged and extended, including high-achieving students who already are working well beyond grade expectations.

Monitoring Student Progress

A consistent and strong research finding is that highly effective teachers provide continuous feedback to learning. They continually monitor the progress of individual students and provide feedback to support further learning. The provision of feedback is a key to effective classroom teaching. Highly effective teachers provide feedback in forms that guide student action and provide encouragement that further progress is possible with further effort. They assist students and parents to see and to monitor individual progress over time — including across the years of school — and they provide feedback to parents on what they can do to support their children’s learning.

Beyond this, highly effective teachers reflect on their own practice and strive for continuous improvement. They use feedback about student learning to reflect on the effectiveness of their teaching efforts. They recognise that improvement in teaching is always possible and are eager to find ways to improve outcomes for students. They place a high priority on their own professional learning and usually work with colleagues in pursuit of improved teaching practices and enhanced student learning.

Accessed from: Teaching and Learning: Highly Effective Teachers (Roadmap Years 1-9)
Enhancing Pedagogy: Pedagogical framework

Waterford West State School recognises that optimum student learning is achieved through integrated learning that is connected to the real world, contain high levels of intellectual quality, recognise differences in students and groups and are provided in a supportive classroom environment.

Focus on developing effective teaching strategies is ensured through:
- Planning and assessment conversations
- Year Level Meetings
- Planned professional dialogues
- Pupil Free Day In-service
- Networking
- Professional development opportunities

Differentiated Classroom learning

Differentiated learning is a pedagogical approach that identifies and monitors the individual needs of students and matches these with ways of teaching. It focuses on HOW something is taught and centres the learner as pivotal in all classroom activity. Teachers are aware of their students’ diverse backgrounds and know that they are academically, culturally, linguistically, economically, socially and motivationally diverse. To maximise student outcomes, teachers consider this diversity when designing educational programs to cater for individual needs.

Teacher practice

Classroom teachers in their day-to-day teaching acknowledge that the particular learning needs of individual children are the starting place to consider differentiated learning. To ascertain these learning needs, teachers monitor the progress of their students to see where they are at within a particular learning task. Teachers can monitor this progress through identifying:
- Difficulties students might be having with the content,
- Skills and processes
- Student’s strengths, and their levels of readiness
- Student's interests and motivations
- The ways students learn.

This monitoring then informs classroom teaching and learning activities so that each individual student’s learning needs, including high-achieving students, can be catered for.
Suggestions for differentiating learning needs

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Planning considerations</th>
</tr>
</thead>
</table>
| **Our students** | • What do my students already know about what I am about to teach?
• What learning difficulties and misunderstandings do I anticipate my students might have with what I am about to teach?
• What constitutes my students’ backgrounds? How will I harness these to maximise student outcomes?
• How will I design the learning experiences to include all my students, including social support? |
| **Curriculum intent** | • Does my planning present and represent the curriculum so that all students have access to the same content?
• Does my planning provide opportunities for students to have different entry points, learning tasks and outcomes that are tailored to their individual needs?|
| **Assessment** | • Does the assessment provide opportunities and mediums through which students can demonstrate learning?
• Have I scaffolded their learning in ways that are responsive to their own particular needs so that assessments are achievable?
• Does my assessment accommodate the learning goals of each and every student for this particular unit of work? |
| **Teaching and learning sequence** | • Will the learning experiences engage, challenge and extend all my students despite their diverse backgrounds, characteristics and needs?
• Do the learning experiences provide students with different opportunities to acquire the content, processes and skills?
• Have I incorporated flexible learning experiences e.g. a variety of activities and learning tasks; representation of curriculum in different contexts; individual, group and whole-of-class instructional modes; and multimodal assessment?
• How will I adjust my teaching in response to the progress students are/are not making? |
| **Making Judgments** | • Are the task-specific assessable elements aligned with what I intended to assess and what I intended students to learn?
• Am I consistently using the evidence in student work to make judgments against the nominated assessable elements? |
<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
</table>
| • Does my feedback-reflection-action loop explicitly focus on individual progress and differences in students?
 • Do I use information gained through continuous and formative assessment processes to modify my teaching and to plan the learning activities appropriate to my students?
 • Does my feedback process provide information to students and their parents/care givers about particular student learning needs? |
Assessment

Assessment is a key aspect of the teaching and learning process. Assessment focuses on the performance of individual and groups of students in the educational setting and occurs in a variety of ways. It involves a practical, systemic process for collecting and analysing data, the major purpose of which is the improvement of learning through informed decision making.

Assessment occurs when students are active in their teaching and learning environment. It should be:

- Diagnostic – to find out what students have learned and what they still need help with
- Formative – to contribute to an overall judgment of how a student is progressing in a subject
- Summative – the final grade that a student achieves in a subject over a period of time

Reporting

Reporting is the process of communicating information obtained from the assessment process about students’ demonstration of learning outcomes.

Reporting provides information on:

- Demonstrated evidence of student learning against agreed standards;
- Judgments made about students’ demonstration of learning outcomes.

Audiences:

- Students of Waterford West State School
- School Administration Team – Principal and Deputy Principals
- Parents/Carers of students at Waterford West State School
- Waterford West State School Community
- Education Queensland.

When:

- A written progress report is issued twice a year – end of Semester 1 and Semester 2
- Face-to-Face Interviews are offered twice a year – once at the end of Term 1 and again during Semester 2

Assessment and Reporting Schedule

Information regarding assessing and reporting at Waterford West is specifically detailed in the Waterford West State School Assessment and Reporting Schedule. Please refer to this plan for further information about assessment and reporting practices and responsibilities at Waterford West State School.
MODERATION

Why do we moderate?
Moderation provides an opportunity for teachers to achieve **consistency in teacher judgment** through a structured process that allows them to compare judgments in order to either confirm or adjust them.
The process involves close collaboration to establish a shared understanding of what achievement of KLA standards looks like and whether or not the student has demonstrated achievement of that standard. Teachers work towards making judgments that are **consistent and comparable**.

What purposes can moderation serve in supporting consistency in teacher judgment?
- Develop shared or common interpretations of standards and expectations of what constitutes achievement of KLA standards
- Develop shared understandings of what student achievements looks like
- Develop accuracy and reliability in making judgments
- Ensure judgments are equitable in terms of implications for student learning
- Strengthen the value of teachers’ judgments
- Inform well-targeted teaching programs
- Make judgments in relation to syllabus standards

Ultimately, we engage in moderation to ensure that reported judgments of student achievement are defensible and comparable.

Social Moderation
Social moderation is an extended, collaborative process. It is the culmination of a process that delivers multiple opportunities for learning through quality, equitable and well-considered educational experiences.
The ultimate aim of moderation is to achieve comparable grades in a diverse range of authentic assessment tasks across a range of schools in Queensland.
The moderation process can be enacted within a school based context and/or across clusters or regions. While cohesive groups working collaboratively to achieve consensus, on-line models may provide moderation contexts that respond to issues such as distance or like-school groupings.

Conference Model of Moderation
At Waterford West State School, we have chosen the Conference Model as the process for moderation each term. Using the conference model for moderation, teachers discuss and deliberate in making their judgments about the quality of all of the evidence presented as student work. **Teachers make judgments on several criteria to reach an 'on-balance' holistic judgment.** This is not a procedural approach but one that is based on the teachers’ professional knowledge in shared and collaborative decision making. Teachers mark (some or all) student responses individually, and then select assessment samples representative of their application for A to E standards. They meet with other teachers to discuss their judgments by sharing their samples. Teachers reach a consensus on the interpretation and application of the standards.
Forming strong partnerships with our school community and local community is a priority. This is evidenced through:

An Emphasis on a Team Approach

- Building strong year level teams through year level meetings, year level moderations and shared practice
- Explicitly planning for links between classes and sectors of the school as part of the curriculum plan.
- Regular opportunities for cohort and whole school sharing and reflection

Strong Parent Partnerships

- Displays in the classrooms, Administration Block and the Resource Centre feature student-created products and highlight the innovative practices within our classrooms.
- Regular parent communication through school newsletters, class newsletters, communication books, interviews and emails.
- Inviting parents to learning celebrations, culminating activities or Expos planned as part of unit planning.
- Parent volunteers working in classrooms
- Parent workshops and information sessions provided throughout the year
- Parent involvement with home reading, homework tasks and school projects